
CONTESTED
DEVELOPMENT:
Finding Pragmatism in

AGILE DEVOPS&

A publication of

Zubin Irani and Brandon Cipes

CONTENTS
Introduction	 3

People Wanted The Recipe Book	 7

Agile Project Management	 13

What’s The One Thing You’d Do Differently?	 17

Agile Program Management	 23

If I Get Hit By a Bus…	 27

Agile Portfolio Management 	 31

Specify the ‘What’ And Let Teams Figure Out the ‘How’	 35

Continuous Integration / Continuous Delivery (Ci/Cd)	 39

Done Done, or Done?	 43

Infrastruture-As-A-Service (Iaas)	 47

I Had Nothing Left to Do	 49

Test Automation 	 53

It’s a Buzzword. I’m Excited For it to Go Away.	 55

DevSecOps	 61

The Latest and Greatest Isn’t Always the Smartest	 63

Monitoring	 68

Picture of a Beating Heart	 71

Conclusion	 76

Great, You’re Deploying the Wrong Thing Faster	 81

a publication of cprime

3

INTRODUCTION
On February 11, 2001, a cabal of technologists gathered at Snowbird Ski
Resort in Utah. Representatives of Extreme Programming, SCRUM, DSDM,
Crystal, etc. were present. They did exactly what you’d expect 17 men on a
ski trip to do: Write a philosophical treatise about software development.

Out of Little Cottonwood Canyon came The Manifesto for Agile Software De-
velopment (a.k.a. “The Agile Manifesto”), arguably the best manifesto since
Karl Marx and Friedrich Engels’s. It has since turned into an unstoppable
jargon avalanche that crushes anything in its path. If you want to start a
riot at a Silicon Valley bar, just ask a table of developers to define “Agile.”

16 years later, Agile is messy and DevOps, the 2008 expansion pack, is mess-
ier. There are as many definitions of each as there are practitioners. More
worrisome, companies are losing faith in Agile and DevOps for delivering
less than promised.

But what did they promise?

Jim Highsmith, an Agile Manifesto co-author who wrote its history sixteen
years ago, argues that “…the meteoric rise of interest in—and sometimes
tremendous criticism of—Agile Methodologies is about the mushy stuff of
values and culture.”

In Jim’s view, Agile was a coup d’état in that “the practices define a devel-
oper community freed from the baggage of Dilbertesque corporations.”
Agile was more about re-humanizing corporate life than creating things
faster and cheaper. Over time, discussion of Agile submerged in corporate

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

4

buzzwordery about ROI, bottom line, and go-to-market speed. That stuff does
matter, but it’s not why Agile grew wildly popular.

“This freedom from the inanities of corporate life,” wrote Jim, “attracts pro-
ponents of Agile Methodologies, and scares the begeebers (you can’t use the
word ‘shit’ in a professional paper) out of traditionalists.” The traditionalists
are still scared, which is probably why the Agile community has appropri-
ated so much Dilbertesque lingo. To beat the enemy, we parroted him. And
like an undercover cop who goes too far, we lost touch with Agile’s moral
foundation.

That is the first reason why we wrote this book. In our 35 combined
years doing Agile and DevOps consulting, we saw how they became
orphaned and misunderstood. If we tried to save them with yet another ac-
ronym and declared it aloud in that Silicon Valley bar, all we could expect is
an empty bottle of IPA to the head – or a snarky op-ed in TechCrunch.

Instead, we want to explore how Agile and DevOps practitioners do and
think about their work. In fact, we interviewed 11 of them and asked them
to speak as if we were all at the bar drinking IPAs with us.

As consultants, we look for concrete stories about Agile and DevOps but
rarely find them. That is our second reason for writing this book. We
want people to understand the experience of Agile and DevOps, not just
their buzzwords. In homage to the Agile Manifesto and its signatories, this
eBook brings Agile back to its irreverent, radical roots. At the same time,
we’re not blind idealists – we get that businesses adopt Agile practices so
they can beat competitors and make more money.

The need to write this book is a testament to the success of Agile and
DevOps. The more popular a movement becomes, the more that time frac-
tures it.

a publication of cprime

5

Think of martial arts as an example. Legend has it that the Buddhist monk
Bodhidharma traveled from Central Asia to China in the 6th century B.C.
He taught Chinese monks physical exercises that became Shaolin Kung Fu,
which proliferated into a bazillion styles (color + animal = new Kung Fu
style), one of which reached Okinawa, where a local thought, “Hey, this is
pretty sweet.” He added it to a local martial called To-de to make Karate-Do,
which became many styles of Karate, which landed in mainland Japan,
which…

…The story eventually reaches a hotel in Las Vegas where two people fight
in an octagonal cage to prove who has a “better” martial art. (The story has
a happy ending – you’ll see.)

On the current trajectory, that’s Agile’s future. Doubt, confusion, and conflict
motivated us to rediscover the common ground amongst Agile practi-
tioners. That’s our third reason for this book.

Admittedly, we might enjoy watching a Scrum Master beat the pulp out of
a DevOps Release Manager for a shiny belt. But, we’d rather see Agile and
DevOps reach their full potential.

In the pages that follow, you will not see lines like, “We leveraged these
best-in-class tools to align our application lifecycle with a synergistic,
scalable framework.” If interviewees said things like that, we replied with,
“What do you mean? Can you give us an example?”

Our task is to deconstruct the what and why of Agile and DevOps. We’ll
tackle Agile and DevOps in nine sections, each followed by a Q&A. A few
words of warning for the reader:

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

6

What this book is not.
A how-to guide far too complicated or vague for anyone to use (a.k.a. a
 “white paper”).

 “Research” designed to generate a self-serving answer versus inves
 tigate an issue.

 A sales pitch or its cousin, the case study.

What this book is.
  An exploration of how Agile and DevOps fit into 21st century
 innovation and business.

A compendium of stories and dialogues on the nature of Agile and
DevOps

A place for the authors to vent their frustrations with tech culture
and its absurd institutions.

How to Read this Book.
Grab your beer and prepare to dispute most of what we say. If we all
agreed, it wouldn’t be Agile.

a publication of cprime

7

PEOPLE WANTED
THE RECIPE BOOK

Jeff Mckenna, Agile Action

In 1992, Jeff McKenna joined the world’s first Scrum team, which was led by
Jeff Sutherland. They worked on Synchronicity, a set of software develop-
ment tools based on the Smalltalk environment.

As an Agile coach and one of the earliest members of the Agile movement,
Jeff has a rare perspective on its past, present, and future. He’s quick to
remind people that Agile and DevOps aren’t new. What seem like revolu-
tionary, untapped ideas have been around for over a quarter of a century.

The problem, argues Jeff, is that our desire for a “recipe book” gets in the
way of common sense. Jeff shows why in this no-nonsense Q&A:

How did you get into Agile development?

I was a coach on the very first Scrum team in 1992. By that time, I had been
doing software development for 30 years. The godfather of scrum, Jeff
Sutherland, was CTO of that project.

We didn’t know how to do much of anything when I started. There were
no processes, no Waterfall, nothing. We figured it out by sitting, talking, and
interacting with each other. We sat together, ate lunch together, and talked
all the time. Technical issues and technical quality mattered to us.

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

8

Continuous integration, now part of DevOps, was just a standard practice I’d
been doing since the 1980s, and I brought it to Scrum. Same with continuous
deployment. Talking to customers, getting the value chain together, and all
that already existed. All of us on the project brought our experiences in
these areas.

To me, Agile was a bringing together of practices many people had de-
veloped. Software people have a kind of hubris that makes them think
software is different from everything else in the world. There’s some truth
to that, but it doesn’t mean that how humans work together is any different
in software.

Tell us more about what early Agile was like. What role did
you play on the team?

When we started with Agile and Scrum, I was a technical coach on that
first project. And my job was to ensure quality remained high. I reviewed
code and got others to do it so we could improve continuously.

If you lay out steps to do something, it looks like this: (1) What do we need to
do? (2) How are we going to do it? (3) Do it. (4) Did we do it ok? Those are the
four fundamental steps of all engineering.

If you didn’t do it ok, there’s the problem. If you made an incorrect design
decision early in the project, you wouldn’t find problems until very late in
the project. Agile significantly shortens that discovery time.

What is the state of Agile today? What’s going well, and what’s
not going well?

I think we’re working on the front-end problem of software. What do we
need to do? Why do we need to do it? Lean startup methodologies are all

a publication of cprime

9

about getting feedback on a business plan earlier and faster. The question
is, how do we change after getting that feedback?

DevOps is the opposite end. From my point of view, DevOps is Agile
being spread out across the value stream.

But DevOps is not new. I was on a team delivering working software every
six weeks to 170 customers in 1989. That rate was generally considered im-
possible. To do it, we needed continuous deployment and had to work closely
together.

The Agile Manifesto showed up nine years after Scrum, and Agile became
a ‘thing.’ But human nature means that people want a recipe book.
Agile is not a recipe book though. It’s an attitude about continuous
improvement.

Unfortunately, in most formal corporate structures, people are antithetical
to getting direct feedback. They don’t want it or don’t want to do anything
about it. This is a deep problem. Agile started bottom up, so the pioneers
didn’t understand the necessity of cultural changes in corporate agile
adoption.

It’s still a battle to get people to work together. The research says just put
people in the same room if you want collaboration. Most of this stuff is
really easy. But you have to do it!

Agile hit a bit of a wall in recent years, so you hear the Agile found-
ers saying it “failed.” No it hasn’t! The problem is the limitations of the
systems implementing it.

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

10

You were an early signatory to the Agile Manifesto. Why was
that document important? Why does it still matter?

The purpose of the meeting at Snowbird wasn’t to write a manifesto. It
emerged from the meeting. The principles were not even clarified until
afterward, but they do capture the essential qualities of Agile.

I go back to the Manifesto when Agile isn’t working. Which principle
did we forget about? The Manifesto provides guidance.

Sometimes, as a coaching exercise, I’ll ask, “How would you rewrite each
principle for your purpose?” Take “Deliver working software frequently.”
What does that really mean? It might involve getting feedback from the
people who pay money for the software because they define what “work-
ing” means.

What are the values of Agile software developers? What is the
nature of the relationships it should create?

In our training, we ask people to go back and remember great team proj-
ects they were on – maybe in sports, a fraternity, church, or the military.
Then they come up with keywords or phrases about their experience.

I hear “fun,” “accomplished,” “useful,” “trust,” “inspired,” and similar words.
Maybe ten percent of the time, people say, “productive.” Most companies
want Agile to become more productive, but people don’t care about being
productive at something they don’t care about!

The people who do Agile well are focused. When they’re there, they are re-
ally there. They’re not available to respond to every twitch from universe.
People become more productive, but if you go after productivity first, it
doesn’t work. Productivity is an emergent result of good team dynamics.

a publication of cprime

11

The Agile mindset is about recognizing when you did something and it
didn’t work, AND then doing something to improve it.

Toyota figured this out during the rise of lean manufacturing. They would
open their doors to people from American car companies. The Americans
thought Toyota was hiding something, which they were – they were hiding
the team dynamics in plain sight.

Every time Toyota teams experimented, they wrote it up, and it had to fit
on one piece of A3 paper. It covered what they did, why, how, and the re-
sults. They keep those A3 papers and review them before reinventing the
wheel. Oh, we tried that and it did not work. But have conditions changed
such that it would work now? They recognize what didn’t work and why.

What is not talked about enough in the Agile world?

That Agile is hard. People have ways of doing something, and because Agile
is a cultural change, they tend to go back to what worked when it gets
difficult.

That tendency is built into our biology. We survive because our biology
makes us good at repeating what works and avoiding what doesn’t work
(it’s called evolution). And if you try something new, a lot of things won’t
work. You have to hang in there.

Also, management culture today is about having less people doing more
work. You can use less people, but once the work piles up, projects can still
end up with a 1,000 people. That’s too many.

I once coached a project that had 30 people, and they weren’t getting any-
thing done. We picked seven people, got rid of everyone else, and suddenly
started getting things done.

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

12

Jeff Sutherland has given the same advice for 20 years: managers are a
central problem. Get the teams going first. Don’t worry about anything else.
Just get teams delivering software reliably and improving continually.
Jeff does ‘tough scrum,’ which means if a team doesn’t start delivering, he
disbands the team. If the same person fails on two teams, he lets that person
go. This stuff is not that hard, but you have to do it. Patience isn’t talked
about enough.

As a coach/consultant, how do you know when Agile is suc-
ceeding? What are the signs?

Basically, it’s working if people are happy. As human beings, we don’t like to
work in malfunctioning systems. Jerry Weinberg, a ‘grandfather’ of Agile,
said, “Remember, people are always doing the best they can in the system
they’re in.”

If there are problems, usually it’s the system. What structures or processes
are inhibiting improvement?

If Agile is succeeding, the business should get better results. But they won’t
show up right away. There is a new culture, a new way of working, and
new responsibilities. If managers are too short-term focused, they won’t
wait for the change, which can take three to five years.

Some people are just in the software industry because of the money. They
won’t make it through a long Agile transition.

a publication of cprime

13

AGILE PROJECT
MANAGEMENT
Every technology company needs people who are too smart for their own
good. cPrime has one named Kevin H. Thompson. He has a PhD in Physics
from Princeton and has spent more time pondering Agile than is healthy
for a human being.

Kevin has an uncanny ability to deconstruct the parts of a greater whole,
which is why we tapped his brain for Agile Project Management. If you
hate the term “project management,” calm down. You know anger leads to
the Dark Side of the Force (because you’re in IT).

Usually, we reduce project management to frameworks like Scrum and
Kanban. The question is, what do they all have in common?

Decisions, says Kevin, are the outputs of Agile frameworks. Agile should
produce fast, quality decisions so that teams can spend most of their time
creating code, hardware, etc. for projects, which are temporary endeavors
to create something. Towards that end, Agile establishes a system of gover-
nance so that self-organization doesn’t become Lord of the Flies.

In terms of sexiness, the word “governance” ranks somewhere between
“compliance” and “org chart.” But governance is essential to self-rule and
the demolition of a hierarchy in which middle managers routinely rain hell
down on product development. Governance keeps Agile running at three
levels – Team, Program, and Portfolio – and has five components:

Roles: Agile frameworks set checks and balances by dividing pow-
er and authority among team members. This practice clarifies who

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

14

knows what and who can call which shots. Roles kill “rule by commit-
tee,” which produces inane debate and little action.

Ceremonies. These recurring meetings with standardized agendas,
attendance, and practices facilitate information-sharing and deci-
sion-making.

Artifacts: Artifacts are deliverables. The list of artifacts – and who
completes which one – is a series of decisions. Artifacts make work
measurable.

Tracking and Metrics: They keep teams honest, flag problems early,
and sometimes lead to changes in the plan. Metrics tell who’s getting
what done and how quickly.

Governance Points: The moments of decision, which reflect the results
of parts 1 to 4.

Today, most teams practice either Scrum or Kanban. The reasons for choos-
ing one over another tell us a lot of why Agile matters at the project level.

crum is Adaptive meaning it’s good for high uncertainty, and new prod-
ucts are uncertain. If you wanted to invent a drone that geolocate friends,
flies to them, and delivers a verbal insult (a la Bowerick Wowbagger
from The Hitchhiker’s Guide to the Galaxy), it would be hard to foresee all the
requirements. Perhaps you make detailed plans for two-week sprints and
‘high-level’ (i.e. vague) plans for the longer-term. Scrum seeks to maximize
value delivered over time, but it can’t eliminate the disruption and cost of
unforeseen changes.

Kanban is a Reactive process, best suited for work that can’t be planned.
It’s ideal for customer support, firefighting units, emergency rooms, and
marketing where no request is predictable. It’s for short-term,

a publication of cprime

15

high-priority projects. Although it’s Agile, we wouldn’t recommend using it
for product development.

The point is that Agile Project Management reflects the style of deci-
sion-making a team will practice. Waterfall was designed for certainty,
which we all learned is impossible in development. We build Agile on
governance so that the HiPPOs (Highest Paid Person’s Opinions) and PUBs
(People’s Unintelligible Buzzwords) can’t hijack projects.

a publication of cprime

17

WHAT’S THE
ONE THING
YOU’D DO

DIFFERENTLY?
Ken Olofsen - Runnable

Conventional wisdom says that Agile and its trunk load of lingo are just for
software developers. Ken Olofsen, who has served as Co-CEO of Runnable
and Head of Portfolio and Customer Marketing at Atlassian, says otherwise.

As Agile was becoming a ‘big deal’ around 2008, Ken joined the marketing
team at Atlassian. He started using Agile products to manage marketers
and was probably one of the first to do so.

Ken sees Agile as a culture of self-reflection. In this Q&A, he shares some
smart questions you should steal.

How did you get into Agile and DevOps? What was the ‘aha’
moment?

I started my career as a software consultant, transitioned into marketing,
and ended up at Atlassian in 2008. The ‘aha’ moment came from a compa-
ny we acquired called GreenHopper. Back in the day, you used a sharpie,
post-it notes, and whiteboards to do Agile planning. GreenHopper gave you

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

18

digital sticky notes and turned Atlassian JIRA into a virtual, drag-and-drop
whiteboard.

Our timing was perfect. From talking to customers, we knew there was
a desire to take Agile from the physical world to the digital. Agile was
gaining momentum because it provided faster feedback through iterative
development using weekly or biweekly sprints that produced functioning
products. At the time, it was revolutionary to make something you could
interact with in such a short timeframe. The enthusiasm for digitizing Agile
led to JIRA Agile – now part of JIRA Software – and the introduction of other
mainstream Agile tools.

How did your job change?

As the JIRA marketing guy, I hadn’t written code in 15 years, but I was
Scrum-certified and figured out how to develop an Agile cadence for
marketing teams. We used biweekly sprints to prioritize work and commit
to iterations. Eventually, we switched to Kanban because the nature of
marketing is different than development. We had to react quicker to the
business and real-world events.

Kanban worked in marketing because it forced us to reprioritize constantly.
We had a finite capacity, so before taking on a new project, we had to justify
that it was more important than what was already in the queue. You can’t
keep adding, so Kanban forced us to see our priorities through a zero-sum
lens.

It’s not always easier to say no to the new thing. Agile provided the frame-
work for hard decisions.

a publication of cprime

19

What is the biggest avoidable mistake you see in Agile teams?

The biggest mistake I’ve seen is getting semi-educated on Agile – learning
about standups, retrospectives, using a board to put tasks together, etc. –
and latching onto ceremonies but not really understanding the philosophy
behind them.

People get fixated on doing Agile ‘the right way,’ which we dismissed at
Atlassian. There is no right way. The notion of Agile is to be self-reflective
and see if your processes work. If yes, continue. If not, change it up. Don’t do
Agile a certain way just because someone said to do it that way.

Agile is evolutionary. You find a new technique, try it, and it fixes one
problem but introduces another. You fix that problem and create another
problem, and so on. If you adopt an Agile philosophy, you’re committing to
always challenge yourself and how you do things. It will always change.

Why do the “business” and “IT” usually have such a dysfunction-
al relationship?

The business has expectations about features, functionality, and timeline. If
the business does a poor job of communicating what it wants, IT inevitably
will make assumptions. IT works with constraints around budgets, time, and
resources that the business isn’t unaware of.

Problems arise when the business fails to set expectations, and IT fails to
communicate its constraints. The relationship may vary depending on the
type of IT organization you run. Some organizations think of IT as a cost cen-
ter, primarily focused on keeping the lights on at minimal expense. Others
try to push the envelope with innovation.

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

20

It’s safe to say that majority of dysfunction comes from cost center IT
departments. There’s not enough investment and encouragement to
make IT innovative and challenge individuals to do cool things. They’ll
always fall back on a constraint.

What are the most important questions you ask or get asked
regularly?

When I was Atlassian, a new CFO came in and asked everyone the same
question: What’s the one thing you’d do differently? It was a fascinating
psych experiment. Effectively, it put people on the spot to think, if I had a
magic wand, what would I do?

Sometimes, multiple people or teams gave the same answer, and that was
telling. It was a sign of concern. It’s often more difficult to say, “That’s a
bad idea,” than to go along with precedent, even if the way we’ve
been doing it forever doesn’t make sense.

That’s why Atlassian talks about Agile and DevOps as mindsets rather than
techniques. They encourage everyone to say, keep doing hard work, but
have time and space to ask if it’s the right use of effort.

Every two weeks at Runnable, we did a retrospective to discuss what did
and didn’t work. Maybe we had a failure or outage, but we were not trying
to ‘out’ anybody. Rather, we’d ask, “How were you in a position to make
that mistake without someone else stopping you? Do we need a check-
list? What would prevent that failure in the future?”

What’s the difference between Agile and DevOps?

While Agile and DevOps focus on different areas of the software develop-
ment process, they’re basically the same concept. The belief in Agile is that

a publication of cprime

21

at the end of every sprint, developers should have a functioning product to
share with their team and customers. DevOps’ role in the story is making
sure the code we write is deployed onto some machine and working as
quickly as possible.

Agile brought down release cycles from months to two or four weeks.
DevOps brought us to daily and nightly cycles. The next step is to commit
that last line of code and deploy almost instantly.

a publication of cprime

23

AGILE PROGRAM
MANAGEMENT
Agile at the team level is cozy and almost tribal. After a two-week sprint,
you could put on a blindfold and tell your coworkers apart by the smell of
their lunch. But what teams receive from above can entirely undermine
the projects. If your plumbing sends water through rusty pipes to a clean
glass, you still get a glass of rust-filled water. Same with Agile – when bull-
shit requirements travel from top to team, it contaminates project manage-
ment. That’s why Agile teams need Agile Program Management.

The program level addresses questions like, who should be on what team?
How do you develop requirements for multiple teams? How do you plan
and track work across teams doing distinctly different projects? How do
you make sure each sprint serves the strategy of the business?
The program managers coordinate multiple projects to achieve the buzz-
word you’ve been craving for five pages: Alignment, puh (we spit after
writing it).

Alignment (puh) is among the top PUBs (People‘s Unintelligible Buzzwords) of
2017. It’s great for making people think you agree on objectives over which
you had no choice. Most business stock photos depict alignment.

Real alignment is a state in which people, processes, and technology work
towards accomplishing the same thing. Like the mythical Unicorn, Align-
ment tends to soak up a lot of money yet never reach its lofty aims. Why?
Because there’s no program management layer.

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

24

Program management is where the three governance levels -- Project,
Program, and Portfolio – start to matter. Program is the bridge, the unifier,
the cheesy protagonist in a movie that says, “We’re all in this together” after
working out everyone’s interpersonal baggage.

The question of program management is, how do we get multiple teams to
produce the pieces of release that I can send to production? The trouble is
that projects tend to be interdependent. Again, if I want to make the Insult
Drone, how would one team begin to write the insult personalization scripts
without first having the facial recognition code? Three people ensure that
projects don’t run into such issues:

Team Product Owner
 Controls product requirements for up to three teams.

Area Product Owner
Controls big-picture product requirements, decides on content of
releases.

Program Manager
Deals with collaboration among teams, including addressing depen-
dencies.

Their North Star is usually a Burn-Up chart that plots the scope of a release
and work actually completed. It shows whether work is happening at a
steady and predictable rate. If not, why? Is one team code-jamming another
due to a dependency? Did one set of requirements overload a team?

Essentially, the Burn-Up captures the purpose of program management: to
ensure that releases go to production on time and contain what the bigwigs
expect them to contain. It’s distinct from project management in that the
program roles manage teams, not individuals.

a publication of cprime

25

If program management sounds less concrete than project management,
that’s because it is. As Agile scales, the distance between the code written
and people defining the requirements expands. For a visual, imagine that
you’re in army platoon out on a field next to friendly platoons. The general
is up in a balloon with a microphone, and he’s yelling out orders in Latin
instead of English. You pick out a few roots words, but really, you have no
idea what the general wants. The program management layer translates
for the platoons.

a publication of cprime

27

IF I GET HIT
BY A BUS…

Nirav Parikh - Redbox

Some people are so damn rigorous in their Agile practice that their teams
seem to move gracefully, like ballet dancers or frolicking antelopes. Nirav
Parikh, VP of Technology at Redbox, is way too modest to ever claim such
prowess, but it’s true – he makes Agile sound and look good.

Nirav is an alumnus of DirecTV, where a lot of great Agile and DevOps
happened in the last decade. In this Q&A, Nirav drills into Agile details that
will make you reflect on how you solve problems, define success, and stay
on course. How resilient are you against turnover, sickness, or getting hit
by a bus?

When did you realize you had to change how you do your job?

In 2004, when I was at DirecTV, we started looking for a better way to
develop, and by 2007, we had implemented Scrum. The problem for us was
that when you solve complex problems, you can’t think through everything
first. Imagine a puzzle. You start solving it and along the path you find solu-
tions. You could never define the whole puzzle before you begin.

We had reached a point where it took too long to put anything together. The
business was trying to set requirements without knowing what technology
was capable of doing. With Agile, we could work in smaller increments and
change along the way.

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

28

How did your work change after going Agile?

Agile is a phenomenal transformation for folks on a team. But if you’re in a
traditional organization in a leadership role, the transition is harder.

I was on the fence being part of a team but also a leader. Initially, it was
complex. How would I manage and lead work for three different agile
teams? At the time, there weren’t enough tools to aggregate all the infor-
mation together, so we started with physical whiteboards.

Agile was a powerful way to estimate, plan, and understand work. Ok, I’ve
got seven stories with 25 points. One team probably can’t do it in one sprint,
so I’ll chunk it up. Estimations and longer-term planning became easier too.
One epic becomes seven to eight sprints worth of work. If you have one
quarter, sure, it’s doable. In one month, probably not.

Whiteboard Agile struggled when you hit 300 or 400 developers but be-
came easier in 2010 when tools started to aggregate info. Today, I can see
one dashboard with everything I need.

What’s the most important question you ask your teams
regularly?

At our Scrum of Scrums meeting every other day, I ask, “Where are the
blockers?”

Even in a big organization, it’s a powerful way to understand what’s rele-
vant and important now. The question solves roadblocks in a quick, efficient
manner.

a publication of cprime

29

What’s the most crucial part of software development?

I think it’s having an organization where you’re not thinking in individual
contributions but rather in terms of alignment and a shared belief in how
we do things and make decisions. If you’re aligned on decision-making,
you’ll be successful.

Scrum is certainly good for accomplishing that. There is a common vocabu-
lary with a definition of what we call “done.” We agree that we’re going to
build a new company or product with a certain purpose. If we can align on
that, then we can decide what to do for the next two weeks.

What does it mean for Business and IT to “get” each other?

It means you measure results the same way. KPIs [key performance indica-
tors] are so powerful because you agree on what you’re trying to accom-
plish. When we base decisions purely on time and cost, we disregard that in
business, tech is just one part of the solution.

For example, conversion is a great shared KPI. In a web app, we’re trying to
get certain numbers of conversions from step A to B, B to C, and so on before
a person leaves the app. In the tech organization, a sub-KPI may be perfor-
mance. How fast does the app load? How fast do interactions happen? If the
next page doesn’t load in under a second, it could hurt conversions.

But again, performance is one of many variables in a large equation. If
performance leads to better experiences that generate conversions, great.
But we have to agree on high-level KPIs before figuring out which sub-KPIs
will support them.

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

30

What is the biggest avoidable mistake you have made in Agile?

The biggest avoidable mistake is thinking you can keep some rituals and
discard others. It always backfires. Standard rituals might include backlog
grooming, sprint planning, daily standups, retrospectives, and plan fest
[quarterly planning where you break up stories]. Choosing to avoid or skip
one backfires so quickly.

At Redbox, we thought we could get by without backlog grooming, and
sure enough, we had a sprint or two where on day one, we discovered
we weren’t ready. A whole team didn’t have enough to work with. In an
environment with multiple agile teams working towards large releases,
that’s a problem.

The beauty of Agile is the fact that you do things in small increments, and
each piece has distinct value. It actually takes more planning, more disci-
pline, and more structure than traditional methods.

Waterfall has a distinct planning phase that could last two months. In Agile,
there is quarterly, monthly, bi-weekly, and daily rituals. Teams may not
spend as much time on planning phases, but there is more rigor, informa-
tion processing, and quality in Agile planning.

Forget what keeps you awake at night. What helps you sleep?

What I worry about least is that if Agile is done right, my teams are
self-sustaining. If I get hit by a bus tomorrow morning, or someone leaves, I
know someone else will step in.

Agile produces self-sustaining teams if it’s done right. The realities of life
mean you can’t be dependent on any one person. You have superstars, but
there’s always someone willing to step in.

a publication of cprime

31

AGILE PORTFOLIO
MANAGEMENT
In Kurt Vonnegut’s novel Cat’s Cradle, a U.S. marine general asks Felix
Hoenikker, the co-inventor of the atomic bomb, to invent something that
will help soldiers cross swamps. The child-like scientist, unconcerned with
the repercussions, creates ice-nine, a form of water that freezes at room
temperature. Ice-nine has the unique ability to retrain the molecules in
any body of water to freeze at room temperature too. It’s fine for a swamp
crossing if you’re willing to freeze every natural body of water in the
world, as they’re all interconnected.

Agile without portfolio management is a Cat’s Cradle science experiment.
The invention probably won’t destroy the world, but it might fail to achieve
any discernible purpose, or worse, inflict unintended consequences on a
company.

Agile Portfolio Management is about making sound investment decisions
for the organization. It sets the goals that determine releases, which de-
termine the nature of projects. When technologists lament the IT-business
divide, usually their woes stem from failures at the portfolio level.
Waterfall portfolio management also defines, evaluates, plans, executes,
and tracks major business initiatives. The difference in Agile Portfolio
Management is that it permits adaptation when the needs of the business
change. Whereas Waterfall assumed that the agenda delivered from the
boardroom would translate flawlessly into a final product, Agile embraces
the chaos that is development.

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

32

The driving question of Portfolio Management is “Why?” In Cat’s Cradle,
Hoenikker is a one-man Agile team with poor portfolio management. The
general defined the requirement – something that would enable his troops
to cross swamps – but his requirement didn’t capture the business case:
Why do his soldiers need to cross swamps in the first place? What are the
benefits of crossing swamps? (Not causing Armageddon should be an ob-
vious requirement, but then again, Cat’s Cradle is commentary on nuclear
technology, which can destroy the world.)

“Why” is usually the first casualty in product development. The upper
management, speaking in juicy PUBs (“customer experience”…blah blah),
delivers requirements that are hard to understand in the language of
development. It’s the old joke where two men ask a genie with a hearing
problem for wishes. One ends up with a million ducks and the other gets a
10-inch pianist.

Frustrated that IT doesn’t get it, the upper management turn to gover-
nance – more reports, meetings, and other burdens that deflate the tires of
Agile. To Teams and Program leaders, too much governance from above is
an imposition. Over-governance, you’ll recall, is what the Agile Manifesto
revolted against.

So, alignment is not just about the achievement of goals, but integrity in
how teams function. Agile teams divide up tasks and do their work how-
ever they choose. Uppercase “Agile” companies trust that such teams will
perform faster and better than teams micromanaged by a bitter middle
manager whose real dream was to raise a best-in-show poodle named
Henley. When the portfolio level tries to force alignment that way, it back-
fires by jamming up the workflows that align people to teams, teams to
programs, and programs to portfolios.

The new role at this level is the Portfolio Manager, the Marine general. This
person approves, rejects, or schedules initiatives based on business cases

a publication of cprime

33

presented by the Area Product Owners and Program Managers. The key is
to have that duo in the Project, Program, and Portfolio discussions. It’s their
responsibility to say, “General, the teams said they could invent a substance
capable of freezing all water on earth. Are you sure that’s what you want?

SPECIFY THE ‘WHAT’
AND LET TEAMS

FIGURE OUT THE ‘HOW’
Ken France - Blue Agility

Since the Manifesto’s debut, Agile has evolved from a tribal, team-scale
activity to a philosophy that runs Fortune 500 companies. When multibil-
lion-dollar enterprises want help with Agile transformations, many turn to
Ken France, founder and CEO of Blue Agility.

In this Q&A, Ken shares why Agile bombs if the top executives at a com-
pany don’t buy into it. One of the problems, says Ken, is the never-ending,
ever-proliferating list of cockamamie Agile definitions on which no one
agrees.

We’re with you, Ken. Read on for some Agile and DevOps wisdom that rises
above the terminology fray.

Tell us about your role in the Agile industry.

My company Blue Agility focuses on large-scale Agile transformations. I
started my career as a developer, moved up in the ranks, and have now
spent most of my career in consulting. Besides running Blue Agility, I help
our clients at the executive level.

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

36

How did you get into Agile and DevOps?

My first job out of college was at an air traffic control system. They were
in Waterfall mode. Right when I started, they got a letter from the gov-
ernment saying our company wasn’t meeting milestones and our contract
would be canceled if we didn’t step it up.

We moved towards something we called “iterative” or “incremental” devel-
opment back then. We even integrated automated builds, which you’d now
classify as DevOps.

With iterative development, we could break problems into smaller pieces
and build parts of solutions while testing and implementing others. The
concept of getting something “working” and “out the door” changed.

Initially, we worked on large project teams rather than cross-functional Ag-
ile teams. But the evolution towards smaller teams changed our thinking.
We began to specify the “what” and let teams figure out the “how.”

What is the biggest avoidable mistake you see in Agile?

The biggest mistake you can avoid is having Agile be and remain a grass-
roots effort in the development side of the house. Leaders say sure, do it. If
it’s not a whole organization endeavor, you’ll have some short-term
success then go back to your old ways of working. Inertia will win out.

You have to scale to the whole organization if you want Agile to work, but
you could have people report up the chain. Organizational boundaries
become more about performance evaluations and paychecks than how
works get done. If some team members report up into development versus
support versus IT, it doesn’t matter as long as they work as a team.

a publication of cprime

37

What do Agile practitioners disagree about most aggressively?

There’s a lack of understanding about Agile and DevOps. How do you define
each one?

Agile is usually equated with certain practices, like Scrum. People don’t go
back to the Manifesto. It’s all about technique now. DevOps is usually de-
scribed in terms of CI/CD and tools, not the aspect of bringing development
and operations together. The biggest disagreements come from defining
each one and the overlaps.

I’d say Agile is a prerequisite for DevOps, but in order to truly be Agile, you
need to adopt aspects of DevOps. I’ve been using a Venn diagram analogy
that seems to resonate with people. Some things may be uniquely Agile,
and other things are uniquely DevOps, but the overlap in the middle is so
large it doesn’t make sense to separate them.

What’s the most important question you ask clients regularly?

I ask leaders to think about how their clients view the services they get.
The focus is often on internal mechanics. Agile is equally about clients. I ask,
“What would your client say? Are they getting value from you?” Putting
people in their clients’ shoes creates the right mindset.

You stress the importance of portfolio management. Why does
it matter?

Ultimately, if companies want to achieve better outcomes, they must set
direction and route work in a better way. There are some symptoms when
companies are failing in those areas. I’ll ask, how many projects do you

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

38

approve each year? 200. Ok, how many get done? 50.

I can tell executives how to do a better job of prioritizing and setting direc-
tion, but they must trust teams to get the job done. It’s a mindset change.
Trust that folks know best how to achieve their goals. They just need to
know what the goals are and their priority.

Are Agile and DevOps fads?

I think they’ll endure. Different techniques and frameworks will arise,
but the underlying principles are not fads. Breaking problems down into
small, easy parts is just a better way to work. These techniques are here to
stay, but frameworks and words will change.

a publication of cprime

39

CONTINUOUS INTEGRATION
/ CONTINUOUS DELIVERY
(CI/CD)
Picture Dev and Ops, a couple so dysfunctional that MTV has decided to
make a reality TV show about them. They call it Contested Development. In
Season I, “Waterfalling,” Dev and Ops sit down for those stream-of-conscious-
ness, he-said-she-said interviews. Their monologues go like this:

Dev: Ops is a total code-blocker. I come up with all this brilliant stuff, and
Ops is like, “Err, excuse me, have you reviewed that with the change man-
agement board?” Total buzzkill. Why am I married to this killjoy?

Ops: Whah-ever! Dev goes out drinking with friends, comes home and is
all like, “Uh, I got an idea! Let’s write unstable code that doesn’t work on the
servers. Dev is the worst.”

By the end of Waterfalling, Dev and Ops sleep in separate beds and wage
psychological warfare. If you think this is a hyperbolic description of the
Dev and Ops divide, we beg to differ. Brandon once walked into an inter-
view for a product development position, and the interviewer broke down
crying because the tension between Dev and Ops had gotten that bitter.

We’re opening a chapter on CI/CD this way to make one point loud and
clear: DevOps is not CI/CD.

Soak that in.

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

40

Our DevOps interviewees agree on almost nothing except that a) No one
has the same definition of DevOps and b) DevOps is the union of Develop-
ment and Operations into a single organization (plus quality assurance
or testing if they aren’t included in Dev). CI/CD matters, in part, because it
breaks the Dev and Ops standoff.

If Agile is about making better decisions faster, CI/CD is about making Agile
sustainable. Organizations lose faith in Agile because it’s impossible to keep
up without DevOps automation. CI/CD is the core of that automation. If you
will, bear with us on the definitions. We need to set these straight.
Continuous Integration is the process in which developers and testers
regularly merge and validate new code. In the past, developers wrote code
and integrated it once a month for testing. It was silly because flawed code
from four weeks ago forced developers to revise code written one week
ago. So, CI automates the integration and testing so it can happen continu-
ously.

Continuous Delivery is the process of continuously creating releasable
artifacts. The teams automate code building and testing so they can work
in short cycles. CD teams can release to end-users once per day or even
multiple times daily.

Put simply, CI/CD is a process for continuous development, testing, and deliv-
ery of new code.1

You can see how CI/CD gives Dev and Ops a chance to rekindle their rela-
tionship. CI is for Dev, who otherwise might send complete duds to Ops. CD
is for Ops who, rightfully suspicious of Dev, might stall a release and ask
annoying questions to be sure the code won’t blow everything up.
CI/CD matters because it enables Dev and Ops to work together by trusting

1	 CI/CD gets mixed up with Continuous Deployment, which is the
concept that every change made in the code base will be deployed immedi-
ately to production. Yes, that’s terrifying and unnecessary.

a publication of cprime

41

a process, not each other. While that sounds negative, think about how
you pay for goods at the grocery store. You trust the processes established
by banks and credit card companies, not the cashier who swipes the card
or the company he works for. Trustless systems eliminate situations that
lead to drama.

Of course, CI/CD has less lofty benefits. It enables you to find and fix prob-
lems faster, automate lengthy manual processes, and release more often.
If you release more often, you beat competitors to market with a higher
quality product and make more money than them.

We know, “money” can seem like a dirty, politically incorrect word. That’s
why businesspeople cloak it with terms like “revenue,” “profit,” the “the bot-
tom line,” and other jargon that doesn’t make you think of cloth paper with
pictures of dead presidents.

Look, Dev and Ops married each other for the money, not because they
were both seeking their “best friend” who watches all the same Netflix
shows and “loves travel.” No, this was an arranged marriage.
Even though DevOps is a marriage of convenience, we can’t eliminate the
human factor from CI/CD. It takes months to set up and requires all sorts of
people – quality assurance, Ops engineers, Scrum masters, etc. – to bury the
hatchet. You can automate up the wazoo, but that doesn’t mean Dev and Ops
will automatically hold hands and skip into the sunset.

That’s because DevOps is a culture, and CI/CD is an institution of that cul-
ture. Likewise, Americanism is a culture, and trashy reality shows are an
institution of that culture. Institutions are the rules of the game that provide
some payoff, tangible or intangible, to players. DevOps teams get speed and
quality out of CI/CD, and bored couples get exhilaration and faux purpose
from reality TV drama.

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

42

Again, we must emphasize: DevOps is a marriage of convenience, and CI/
CD helps the couple meet business goals. Technology executives know that
continuous evolution, quick fixes, and quality results create and keep cus-
tomers. Likewise, they know too well that one botched release can rack up
enough angry App Store reviews to tank a product.

If Season II of Contested Development is “DevOps,” Season III is when DevOps
makes a shizzle-ton of money. Then, the company spends it on quinoa bowls,
in-house Shamans, and reclaimed barn wood (which some farmer is laugh-
ing about in his new, scrap-wood-funded barn). A tip of the hat to CI/CD for
funding all three.

a publication of cprime

43

DONE DONE,
OR DONE?

Cameron Deatsch - Atlassian

Marketing Agile software to companies is challenging because, as you
know by now, few people agree on what Agile and DevOps are. That’s one
of many reasons why we respect Cameron Deatsch, Head of Server and
Enterprise Marketing at Atlassian.

Cameron works to provide clarity amongst the confusion, specifically for
organizations attempting to adopt these practices at scale. As big Atlassian
fans and partners, we know that he is unusually successful at that task.
As Cameron shares in this Q&A, the iterative nature of Agile is foreign to
most enterprise execs. It can lead to inspiring successes – or confusion and
hilarity.

You use Agile on your marketing team at Atlassian [read Ken
Olofsen’s interview for some background on this]? How did
your work change after going Agile?

I think we get more done, but it’s hard to measure. We look more chaotic
from the outside compared to when we weren’t Agile. With teams debating
back-and-forth, you’d think there’s no way in hell we get anything done.
Making decisions collaboratively can be an ugly exercise, but usually,
it arrives at the right solution. Rarely do my teams need me to make a
final decision, but maybe they just want to avoid me.

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

44

What is the best example you’ve seen of DevOps in motion?

Atlassian acquired Bitbucket in 2010. When I joined Atlassian in 2012,
Bitbucket was a relatively small team serving less than one million users.
Soon, we quadrupled that number, and the millions of extra users strained
the team and infrastructure. Everything got overloaded. The effect on per-
formance was very public and had to be fixed.

We brought in new leaders who implemented DevOps. They put in a va-
riety of processes that shortened the time between identifying a problem
and doing something about it. When Bitbucket went down, we used to hear
about it from customers. How could we get monitoring in place to prevent
that? How could we relay feedback back to product teams to prevent the
next outage? How could the team develop iteratively yet make sure noth-
ing broke when changes went live? The new leadership sorted that all out.

Thanks to their changes, Bitbucket has virtually no outages now, and the
team can roll things out and back quickly if there are issues. They frequent-
ly launch ‘dark features’ [features visible only to a small number of custom-
ers] before making them public. The team could deploy three to four times
per day if they needed, but generally they do one release daily.

Talk to us about Agile and DevOps technology. What are the
biggest misconceptions about it?

The biggest misconception is that it will solve all your problems. Agile is
a way to plan, iterate, and execute better products. It does not mean your
strategy is sound. If you have a good product strategy, Agile will help you
get there faster with a higher quality result. It’s just a practice.

Agile is not the band-aid you put on a dysfunctional organization or
leadership team. Oh, the developers aren’t happy, not working well

a publication of cprime

45

together, and have no clear direction? Great, let’s be more Agile and
all have birthday cake. Doesn’t work that way.

If you have good leaders in place who trust and respect one another, Agile
can help them all work together. If you don’t have a culture of trust and
open dialogue, standups won’t be pretty.

Team playbooks, Scrum, sticky notes, etc. are nice, but people need to trust
each other and agree on goals, otherwise how you do planning doesn’t
matter – it will fail.

Why do business executives struggle with Agile culture?

My favorite Agile quote of all time comes from a banking executive.
During a visit with Atlassian, he said, “So, this came up recently where
I was told something was done, I told the rest of the leadership team,
but it wasn’t done done. It was Agile done. How do I know what’s done
done, or done?”

We see this situation all the time where executives don’t know how Agile
iteration works. This banking exec lost face by claiming something was
“done” when it wasn’t done in his sense of the word. He wasn’t blaming us;
he was just confused.

The problem in Agile is that you’re never done. You’re constantly iterating
and could have four or five parallel experiences running at any given time.
When you plan to announce a major new feature, it’s not ever done, but
it needs a certain level of quality and availability before you tell all your
customers. That announcement is the closest thing to “done done.”

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

46

What challenges does your organization have with helping
companies become Agile?

They disagree with how strict of an Agile methodology belongs in prod-
ucts like JIRA. Atlassian products have a loose approach because there are
so many different forms of Agile. Honestly, that’s our number one battle.
People want their method baked into the product, but that would restrict
the product, and methods are always changing. We don’t want to tell the
market how it should do Agile.

Is DevOps a fad?

More and more of our customers have changed their titles to “DevOps Man-
ager” or “DevOps Architect.” When people start changing their roles, that
tells me they think DevOps is real. They are being paid to have that title.

a publication of cprime

47

INFRASTRUTURE-AS-A-S
ERVICE (IAAS)

Dev and Ops, reunited by their love of CI/CD during Season II of Contested
Development, get a little cozier. Dev comes home (sober) one night with
red roses and Rioja and says, “How about we chill and watch Netflix?” Ops,
missing the cue, actually turns on Netflix. The couple joins the millions of
viewers who cause Netflix to consume 37 percent of North American Inter-
net bandwidth during peak hours.

Their evening is possible thanks to Infrastructure-as-a-Service (IaaS), a
phrase you never use, imagine, or remotely think about when you roll in
with roses and red wine. In the simplest terms, we’re talking about a dy-
namic cloud infrastructure that adds computing resources whenever you
need them. It serves DevOps teams on both the development and produc-
tion sides.

Why does IaaS matter? To answer, let’s begin with the story of the cloud. In
the early 2000s, companies learned that owning datacenters is painful and
expensive. Sniffing opportunity, specialists built datacenters and rented
out portions to hundreds and then thousands of different companies. They
called it the “cloud” because ruining the majestic beauty of waterfalls
wasn’t enough for the technology industry. Then, they came up with Infra-
structure-as-a-Service, IaaS. Is it pronounced eye-azz, aye-yes, or eye-ass?
No one knows.

Cloud infrastructure matters because traditionally, creating new environ-
ments was miserable. Companies relied on golden copies, one-off scripts,

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

48

and manual configuration, which incinerated expensive labor hours. It also
made CI/CD impractical because configuring test environments created
bottlenecks, especially with, say, 300 developers trying to test and release
daily.

On the operations side, a lack of cloud infrastructure can be fatal. When
Dev and Ops turn on House of Cards for their date night (and try to ignore
its semblance to reality), they and millions of other Americans don’t suffer
buffering. Netflix’s cloud infrastructure can expand capacity as needed.

Amazon Web Services (AWS), Netflix’s cloud of choice, is like the lawn of a
global concert venue. It would be too expensive to provide everyone with
seats, and you might not fill them each night, so the venue takes over as
much or as little of the lawn as it needs.

Like all DevOps practices, cloud infrastructure is about money. When a
team needs additional servers, they’re available without delay. And when
a team doesn’t need them, the company doesn’t pay.

Our interviewees agree that the future of IaaS is containerization, so let’s
touch on it. If server instances are like toothpaste squeeze tubes, containers
are the technology that gets out that stubborn last bit you’d normally throw
in the garbage. It adds to a lot of toothpaste over time. Whereas traditional
virtual machines (VMs) run storage-hogging copies of the operating system
and libraries, containers use a shared OS instance. In non-geek speak, you
get more resources from the same servers (ok, still geeky).

Behind the scenes of DevOps, VMs and now containers ebb and flow so that
couples like Dev and Ops can binge-watch Netflix shows without buffering
that might, heaven forbid, force them to talk. On behalf of the tech industry,
you’re welcome for that heightened state of romance.

a publication of cprime

49

I HAD NOTHING
LEFT TO DO

Roshan Duraisamy

17 years ago, Roshan Duraisamy introduced CI/CD practices at Symantec in
New Zealand. The concept of DevOps didn’t exist yet. If you’ve ever used the
phrase “ghosting a machine,” thank Roshan and his team. They developed
Symantec Ghost, which, for a while, was one of the only ways to clone a
machine to thousands of others.

Today, Roshan is the Senior Director of Engineering at MobileIron. Tactical
and obsessed with quality, Roshan is the consummate DevOps guy and has
much to offer in this interview:

How do you define DevOps? Why does it matter?

In my career, I’ve seen companies interpret DevOps to be the CI/CD space.
Instead, I view CI/CD as a framework that enables DevOps as a mindset and
practice by the team. In my definition, DevOps eliminates the distinction
between building and operating. If you develop it, you operate it too.

In the most optimal DevOps strategy I’ve seen, one integrated team owns
building, testing, support, and operations. They divide teams not by function,
but rather by release.

Everyone wants to make the product as close to right and perfect
as possible when they know they’ll be doing customer support. Who

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

50

wouldn’t want to build quality into a product if that were the ap-
proach?

How did you get into DevOps?

My first CI/CD job was with Symantec in New Zealand. The first
change was to automate the builds and then integrate tests. I was the
Test-Driven Development Lead and junior-most engineer. Management
asked me to evangelize test-driven development to the whole team. It
became my job to ensure that no line of production code was written
without a test attached to it.

It was challenging. Folks had been doing software development for
decades, and here’s this junior engineer trying to sell them a different
way.

When I joined that team, we postponed release dates by months
sometimes. After the transformation, we didn’t miss a single ship
date for years. Automated CI/CD principles made a huge difference
for delivering on time with high quality. Afterward, folks said they
could no longer imagine what life was like without automated testing.

What is the biggest avoidable mistake you have made in
DevOps?

The biggest mistake I’ve made is not learning enough about a product be-
fore building infrastructure for it. In the case I’m thinking of, I was support-
ing a product that had been around for 30+ years. It had to be tested and
used a certain way, but we wanted to get the biggest bang for the buck, so
we built our system for the most common use case across multiple teams.

a publication of cprime

51

The product required specific, static IP addresses with no NAT [network
address translation], but we couldn’t provision them the way the we set up
the infrastructure.

The product team had heard all about the great things we did for oth-
er teams but couldn’t use what we built. The lesson was that if you do
DevOps for multiple teams, you have to understand each one correct-
ly. You can’t use a one-size-fits-all approach for every team and prod-
uct. If I did that project over again, I’d build stronger relationships with the
team before trying to create infrastructure.

What’s the most important question you ask your team
regularly?

What did you have to do by hand, and how often did you have to do it? It’s a
filter on the level of CI/CD. The best indicator of a successful practice is
that the CI/CD engineer has nothing to do.

What’s the most crucial part of software development?

Most crucial part of software development is quality. A product may
solve use cases once you understand them. But without a high level of qual-
ity, the product will tank.

One way to measure quality is by looking at how often customers call into
support or access support articles after a release. ServiceNow does that.
They measure all knowledge base, forum, and support hits and aggregate
that data for the scrum team responsible.

In the successful products I have been part of, we made quality our top
priority, deadline second, and features third. Startups tend to put features
or deadline first and quality third. So, they run into problems.

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

52

If you want renewals and more customers, quality comes first. If you
want quality, don’t write production code unless you can test it. It’s
better to deal with quality issues in-house than with customers.

Forget what keeps you up at night. What about DevOps helps
you sleep at night?

On a team I inherited eight years ago, builds were automated but brittle.
We overhauled the product code, building and testing scripts, networks, etc.
at five different sites. It took two years to fix.

That kept me up at night – literally – because I would get calls about some-
thing that was broken. After the overhaul, we went from every other build
breaking to completing projects without a single breakage. It was time to
switch jobs because I had nothing left to do. That made me sleep well.

a publication of cprime

53

TEST AUTOMATION
In a moment, you’re going to read an interview with Glenn Trattner, COO
of Quantum Metric, who teaches his team to ask these questions: “What did
you do today that was manual? What didn’t you like doing? What task was
most annoying? Figure out how to automate it.”

That is the essence of test automation. Testing is crucial because if we screw
up a release, we risk ruining Dev and Ops’ date night. But no one enjoys
testing. It is someone’s most annoying task, highly error-prone, and there-
fore ripe for automation.

Testing became a shoot-us-in-the-face task as systems became more com-
plex. It’s not unusual to have ten different applications talking to each other
in one B2B platform. Test automation happens right in CI/CD, which we’ve
introduced already. It needs its own chapter because, in the early DevOps
stages, automation can become screw-up central.

Why? Because new DevOps orgs tend to automate the wrong things, which,
frankly, is a problem throughout tech culture. Case in point: Alfred. Despite
all the serious problems available, those guys automated the process of
finding butlers and telling them what to do. Sorry, we meant “Alfred Home
Managers.” Definitely not butlers. Definitely not stolen from Batman.

The question, “Does this need to be automated now?” gets a “yes” too fre-
quently without some reflection. How often is the process repeated? How
long does it take? What teams get delayed if you don’t automate it? Is it an
error-prone process?

The heart of Agile is decision-making, and choosing what to automate is a

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

54

tough decision. The reality is that people will push to automate their own
most hated manual processes. At some point, that’s fine. Great ideas come
from frustration. But early in DevOps test automation, it pays to be discern-
ing.

For example, most companies should automate functional testing before
user-interface testing. They both take two to three hours, they both get
repeated daily, and they both involve multiple dependencies. But if you
automate functional testing, you don’t have to update the automation scripts
very often. Conversely, the UI requires frequent script changes, and no,
DevOps teams do not have an Alfred who can handle that pesky task. Time
is a luxury.

There’s no such thing as over-automating. If you had unlimited people, time,
and money, you’d automate everything possible. But we’d be the first to
admit that total test automation isn’t possible. You can break down tasks into
smaller pieces and automate in patches, but not always. Sometimes, you
just document the process in detail, execute it manually, and not enjoy it. But
afterward, if you’re worthy, you can offload your domestic chores on a poor
soul who has to list “Alfred” as her job title. Ah, the Silicon Valley dream: to
name your employees after a comic book butler.

Again, we can’t avoid money, the M-word, with test automation. Yes, it can
make your development cycles 20 percent more expensive, but that’s
chump change next to deploying a busted release that crushes your repu-
tation. Fast iteration eventually blows up in your face without test automa-
tion.

By the way, “Blow up in your face,” would be a great service from Alfred in
those moments when you’re too lazy to yell at your neighbors about their
dog that always dumps on your lawn.

a publication of cprime

55

IT’S A BUZZWORD.
I’M EXCITED FOR
IT TO GO AWAY.

Glen Trattner - Quantum Metric

If you want to ‘get’ what the Agile Manifesto is all about, dig into this Q&A.
Glenn Trattner, COO of Quantum Metric, personifies everything we love
about the Manifesto. It’s thanks to people like Glenn that “DevOps” is a thing.
But as you’ll see, he really hates that word.

Raw, direct, and irreverent, Glenn took the interview in directions we
couldn’t have anticipated.

Tell us about your background with DevOps

I’ve been in IT operations for 11 years at a media company [in addition to
his role at Quantum Metric]. I help deploy apps to test and production, build
better monitoring, improve availability, etc.

For the better part of a decade, whenever we’ve had an issue in deploy-
ment, a change, or some other issue, solving it has been a group effort
among the development, testing, and operations organizations. We’ve run
weekly ops reviews every Monday at 11 am for many years.

The idea of the meeting is, if we have an issue, we need to talk about it and

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

56

all learn. It’s not just one team’s responsibility. Through that method, we
did our best work. There’s no throwing anything over the fence. We have
an ingrained culture where the production environment is everyone’s
problem.

So how do you define DevOps?

My definition of DevOps is development, testing, and applications services
[a.k.a. IT operations] working in concert to deliver a business service. People
say, “We implemented DevOps.” You can’t do that. What did you actually do?
Seriously, ask people how they “implemented” DevOps, and they won’t be
able to answer.

Some companies will call a “development team” a “delivery organization,”
by which they mean development, testing, and maybe project manage-
ment, but not ops, who are of course part of the delivery. You need all of
them. I don’t love using the word “DevOps.” That fact is, it’s a buzzword. I’m
excited for it to go away.

I call my team “application services.” Dev writes code, testers make sure
it works and performs, and app services is everything else. Is the envi-
ronment built and ready to run? Is there high availability? Can it scale?
Is there monitoring in place? Do we know at 2 pm on Tuesday if what is
happening is good or bad? Is the business functionality working as intend-
ed? We handle all that.

Why does DevOps matter?

If you compare the average mobile app to a call center app, there’s a whole
different world of complexity. Enterprise apps have fewer users but far
more functionality, integrations, crazy unknowns, and permutations of
what people can do.

a publication of cprime

57

CI/CD concepts are fun, and executives at big companies try to do them, but
it’s a bit silly to reduce DevOps to that. The whole idea of DevOps is con-
tinuous improvement in the delivery of apps, whereas CI/CD is just about
automated coding and testing methodology.

Look, we’ve been doing DevOps for 15 years, but we don’t want credit
for being ‘early adopters.’ It’s the only way to deliver if IT is supposed
to be a business differentiator. Usually, DevOps is not ‘the thing.’ It just
helps you deliver whatever ‘the thing’ is.

Even at an IT company, you’re not the thing. You’re trying not to be a cost
center or pain in the ass to a business that wants things done but not for a
bazillion dollars. The only way to do that is to work as a team.

It’s super obvious but not the way IT traditionally works. There used to be
silos, walls, and handoffs. It’s a waste of time to make walls.

What’s the most important question you ask your team
regularly?

The biggest questions I ask are around what we learned and what we can
do better. At our Monday meetings, we look at recent incidents to see what
went wrong. What happened? What was the business impact? Why did it
break? What could you have done better in resolving the incident? Could
we have fixed it faster? What are we going to do differently to make sure it
never happens again?

When a functional issue is found in production, my favorite question is, was
that found in testing? The answer is no, or we wouldn’t be having the con-
versation. Why wasn’t it tested? Well, we didn’t think to test that, or we

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

58

 can’t test that in a test environment? Why? Well, we don’t have the data.
Let’s get it then.

A decade ago, we wanted to smoke test before releases went public. Some-
one said, well, we can’t order something because we’d actually have to
order it. How would we pay? What account would it go on?

Easy. We got real American Express cards, ordered stuff, and canceled it.
What about reporting? We exclude those transactions from reports. You ask
questions around how to improve continuously and problem solve as you
go.

Another great question is, “What is your teachable point of
view?

” I was once asked to think about it and make a video explaining my teach-
able point of view. What I came up with ties nicely back to DevOps.

At the media company, we needed to do things faster, better, and cheaper.
In fact, we had a BHAG, a Big Hairy Audacious Goal, of doing everything 50
percent faster for 50 percent cheaper. How?

My answer was to ask some questions. What did you do today that was
manual? What didn’t you like doing? What task was most annoying? Figure
out how to automate it. Tomorrow, you’ll do something else that’s annoying
and that you never want to do again. Automate that too.

The goal is to work yourself out of a job, though that’s not how it works in
reality. The more you can automate, the better your environment will
become. When you figure out how to not do what you find annoying, you
make the whole process better. It frees you up to improve something else.

a publication of cprime

59

That was my teachable point of view. Find annoying things and make it
so you never do them again. But people fear that someone will lose their
job if DevOps automates processes. It’s not true. I can’t think of a time that
a DevOps team wasn’t growing over the years. “Thanks for automating
everything, we don’t need three of you,” has never happened and likely
never will. A robot in an assembly line is another story. It takes a job and
gives it to a developer or engineer.

In your career, what Agile experiments have gone surprising-
ly badly or surprisingly well?

We had a concept called F-12, which was a 12-step, AA-style program to
get over fear of failure. People disliked it at first, but over time, it became
extremely successful.

The idea was that you don’t want to encourage people to take unreasonable
risk that will inevitably cause a catastrophe. But, you do want people to
take calculated risks that could fail but might make something better. The
idea of F-12 was not to fear repercussions if you did fail. We didn’t want
leaders to make an example out of somebody because we had a production
outage, even if it was a human error.

If people are always afraid to do something, they won’t do anything, good or
bad. There’s no improvement in that atmosphere.

Along the way with F-12, there was a production outage or two and cases
where leaders promoting F-12 didn’t live the message. No one got fired, but
public lashings in project meetings definitely happened when someone
tried to do the right thing and accidentally screwed up.

In the end, F-12 worked out great. People admitted that they didn’t have all
the answers. When someone in ops needs help from someone in dev, they’re

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

60

willing to say, “Your stupid app is broken. Help me.” Dev people are less
likely to ask ops for help when they’re having design struggles, but we got
there. It makes sense to ask since ops will be stuck running whatever they
make. Can we scale it? Will it work? Will it be problematic in the long run?
If you can get those conversations happening, it works out better.

Start with the end in mind. What are we trying to do? Who will be in-
volved? Avoid that whole toss-it-over-the-fence thing. Some dev teams
think they created the next big thing, and ops says, “You expect us to run
this thing how?”

When does fear of failure cause issues in DevOps?

Not being afraid to come forward about mistakes is valuable. A few months
ago, we had a big outage where troubleshooting should have been quick.
But, the person who made the error didn’t come forward out of fear of the
repercussions, so it took two hours to solve instead of ten minutes. F-12 pre-
vented that. If you mess up, say something so we can get back online.
Worry about the cause later.

DevOps is more about culture than tech. There are tools for everything in
IT. But none of them matter without a cultural focus.

What do Agile practitioners disagree about most aggressively?

The IT frameworks and buzzwords. There will be more. The core of all of
them is to create high-performing teams that deliver business value.
That’s the point of all this. If we didn’t deliver something valuable, we
wouldn’t be doing this in a capitalist society.

a publication of cprime

61

DEVSECOPS
In Silicon Valley, language obeys an unspoken rule called the ‘WATA?.’
Whereas the trendy ayahuasca ritual gives tech people epiphanies about
“product-market fit,” WATA? does the exact opposite. It is an eject button for
our minds and creativity when we don’t want to think about the words we
use.

WATA? stands for “What About The Abbreviation/Acronym?” and DevSec-
Ops is one of its notorious creations. No idea in Silicon Valley can amount
to anything without an abbreviation or acronym, and DevSecOps is no
exception.

Development Security Operations in long form, DevSecOps is when you
sandwich automated security testing between Dev and Ops. It happens in
Contested Development Season III, Episode 4, when Dev and Ops accidentally
invite Sec to third wheel their date. You know how that happens:

“Sec, why don’t you join us for sushi on Friday? [don’t actually do that; we’re
trying to be nice]”

“Sure! I’ll bring a date [could hanging with Dev and Ops be worse than play-
ing WoW until 3 am?]”

Sec shows up without a date and wants to share all the sushi, meaning Dev
and Ops can’t order any tempura because Sec is violently gluten-sensitive.

“Why is Sec here?” Dev and Ops think.

“I could have been in Azeroth, but now I get to ask Dev and Ops painfully
awkward questions about their relationship!” thinks Sec, oddly gleeful. As

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

62

they sit down at the table, Sec asks, “Dev, how exactly does Ops know you’re
not putting glaring security vulnerabilities in all your code?”

That, in essence, is the role of Sec in DevSecOps. It introduces automated
security testing throughout the DevOps process so that speed and iteration
don’t shoot a company in the foot. The ‘why’ isn’t rocket science, but as any-
one who has third wheeled knows, the execution can be.

The Heartbleed bug, for example, was coded into 70 percent of public
applications, in part because no one was using security automation to scan
for it. We rely heavily on open source code that, despite the authors’ best
intentions, can have vulnerabilities.

Sec, through blunt questioning, pushes Dev and Ops to reflect carefully on
their interactions. AppSec tools, another great WATA, are the barrier that
stops Dev from transmitting bad code to Ops. Costly? Yes. But “oops” is a bad
PR defense when your company leaks credit cards, social security num-
bers, and private medical data to hackers.

Some DevOps teams try the old, “someone else’s problem” response when
asked to take responsibility for security. But good DevOps teams realize
that, no matter how snazzy, scalable, and sustainable their products are, it
takes one breach to ruin a good partnership.

To be clear, we’re not saying DevOps should take over incident response
and penetration testing. We are saying that at a company where hundreds
of developers release daily without DevSecOps, something will get through
and raise all hell in the DevOps relationship. The third wheel is awkward
but pushes couples to question aspects of their relationship they otherwise
would take for granted.

a publication of cprime

63

THE LATEST AND
GREATEST ISN’T

ALWAYS THE SMARTEST
Kevin Brinnehl

In the early 2000s, the web publishing revolution sparked a mania for
content. Demand for digital asset management (DAM) software soared, and
Widen Enterprises became one of the first DAM providers to go cloud. Good
thing Widen had a team of imaginative engineers, including Kevin Brinne-
hl, to help make the transition.

Trained as a sysadmin, Kevin taught himself DevOps and left SharePoint,
Exchange, and other traditional stacks behind for good. Today, as DevOps
and Platforms Services Manager, he ensures that Widen Collective can
handle more customers, more content, and more integrations. Here’s his
take on DevOps:

How do you define DevOps?

Many people try to define DevOps in terms of underlying infrastructure
and tools. Going to cloud? Oh, you need DevOps. No, you can do DevOps with
whatever you have. It’s more of a philosophy than a place. Give me an API
to support, and I don’t care where it lives.

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

64

I think the goal on the ops side is to make sure developers can spend their
day coding. We try to make deployment and troubleshooting simple for
them.

Why does DevOps matter for Widen?

We wouldn’t be where we are without DevOps. It started during Widen’s
transition from a traditional datacenter to the cloud. As Widen’s customer
base grew, the lead times to acquire and install new hardware became too
long. The cloud and DevOps addressed that issue.

For comparison, at Trek, DevOps mattered for different reasons. There it
was about responding quicker to developers. Essentially, the DevOps team
was born because developers were sick of filing tickets and waiting three
weeks for a response from IT.

How did you get into DevOps?

I joke with fellow DevOps people that I got into it because I get bored easily
and I like to be lazy. My journey started in the mid-2000s with PowerShell
and branched out over time. The mid-level sysadmin path was boring to
me, I knew what I was doing could be automated easily, and there were
other skills I wanted to acquire. So, I automated my way out of doing that
work.

What is the biggest avoidable mistake you have made in
DevOps?

I went into some DevOps projects with the assumptions of a traditional sys-
admin and expected things would work the same in the cloud. You can do
on-premise IT in the cloud, but you’ll waste money. I made some SQL servers

a publication of cprime

65

cost four time as much as a better a solution we put in six months later. On a
deadline, it’s comfortable to do what you’ve always done.

The other avoidable mistake I’ve made is automatically upgrading open
source DevOps tools. The latest and greatest isn’t always the smartest. Peo-
ple spent hours reworking stations after an upgrade. I don’t trust upgrades
without validating them myself.

What’s the most important question you ask your teams regu-
larly?

How can we improve the processes we’ve constructed? We’re never done.
There’s always new ways, and always new software that improves your
build system, decreases deployment teams, and increases uptime. So that’s
the question: how do we make things better even if the story is completed?

How do you approach monitoring?

We make sure customer services are up and meeting SLAs. It’s all based on
performance data. For example, we decide an API request will respond in
x milliseconds or that web page A’s loading time should be no greater than
y seconds. We come up with these metrics in consultation with the product
team. They’ll say they want a new product to have certain metrics. We
give it glance and say ok or tell them it’s never going to work.

We then go through a series of load tests. As long as we can maintain their
metrics through 100 samples, we’re good to go. Then we set up scaling
factors so metrics can be met. If, for example, a page load time is in the 90th
percentile, our scripts automatically spin up a new application node.

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

66

How is your job different now from five years ago?

The difference is night and day. I went from doing server admin work with
SharePoint to standing up full web stacks using PowerShell and Python.
But the biggest difference is the pace of change. If you told me two years
ago that Microsoft would open source their .NET framework, I would have
laughed you out of the room. They did it a little over two years ago.

Forget what keeps you up at night. What about DevOps helps
you sleep at night?

The automation. Our focus right now is on self-healing systems. We con-
struct automation scripts that have health and reliability scripts built in.
In other words, if a node in the cluster goes offline, the scripts will kill the
node and bring a new one into service. That helps me sleep.

What in the future of DevOps excites you?

The big one is containerization and Google’s Kubernetes-based container
management engine. It rocks because if a pod begins to take up too many
resources, the Kubernetes framework will move it. It can also destroy
nodes that fail health checks and bring up new ones. Our goal is to federate
Kubernetes clusters between Amazon Web Services and Azure, so in the
unlikely event one goes down, that engine would bring up nodes in the
other.

Any last thoughts for the DevOps community?

For those resistant to DevOps and cloud, I say get over it. In five to ten years,
I don’t think traditional sysadmins will exist.

a publication of cprime

67

Our community college here in Madison, Wisconsin (Madison College) began
to offer a cloud operations administrator degree this semester. Students
will come out knowing basic coding and ops. I could hire four sysadmins or
one of them. Easy choice.

a publication of cprime

69

MONITORING
With no meaningful differences in opinion, techies have waxed poetically
about the power of ‘big data’ for a decade. Reading most of their articles is
the hybrid experience of listening to an elementary school orchestra while
perusing a Facebook feed. Ooh, Chris is arguing that nutritional yeast tastes
better than cheese in noisy, grammar-starved English? I better say the
same things but in CAPITAL LETTERS.

That said, we can’t escape data in this discussion of DevOps monitoring. The
art is to automatically aggregate, analyze, and act upon swaths of applica-
tion and machine data so you can prevent outages before they happen and
write code that is less susceptible to breakdowns.

For most of human history, progress was driven by the question, “How do
we make life less dangerous, difficult, and unpredictable?” DevOps monitor-
ing continues that tradition.

The desire to monitor is human, not techy. Our brains developed to read
dangerous environments. Interpreting wind, waves, animal tracks, etc.,
helping us stay alive. Likewise, monitoring Facebook for trolls and unfriend-
ing them helps us stay sane. We can’t outrun tigers (or digital trolls), but
by using the data and tools we create, we prevent ourselves from getting
stalked in the first place.

Although the case for monitoring is obvious, it gets cut from IT budgets first
– until there’s an outage that embarrasses the company. While we’d like to
believe that people are patient and understanding, the reality is that they
are Pavlovian conditioned to get what they want instantly or feel outraged.
We’ve all had moments where an internet outage feels as stressful as
getting chased by a bloodthirsty tiger. And we’re quick to bash and stop

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

70

paying companies that fail to satiate our on-demand entitlement.

Facebook, for instance, has 2 billion users who log in at all hours. Keeping
a system of that scale up requires diligent monitoring. People need to be
able to read the heated exchange between vegan Chris and carnivore Dan,
who’s now taunting Chris with bacon memes.

Monitoring also protects the systems behind hospitals, nuclear reactors,
military installations, and services that could cause real disasters, not
Tweet storms (we assume that’s where outraged people go if Facebook isn’t
working). More importantly, monitoring reveals how code operates in the
real-world.

Here’s an analogy: a standup comedian gets instant feedback for anything
he says on stage. Either the audience laughs, stays silent, or boos. Laughter,
or the lack thereof, show how his jokes (i.e. code) operate outside his brain.

DevOps is subtler. Application performance monitoring tracks memory,
storage, and processing power so you know when resources are saturated.
Machine data monitoring looks for quirks in application logs and details
such as which IP addresses are accessing the app.

That’s our jungle, and those data points can predict when we are going to
get booed off the stage, mauled by a tiger, or assaulted with vegan propa-
ganda.

a publication of cprime

71

PICTURE OF A
BEATING HEART
Sarah lahav - SysAid

Historically, DevOps has not been gender-balanced. Thankfully, that’s chang-
ing. At SysAid, led by CEO Sarah Lahav, more than half of the DevOps team
is female.

Sarah began her IT career in 1995 at Iscar Metalworking (now owned by
Warren Buffet) and was the only woman in the department. In 2004, she
became employee #2 at SysAid, helped expand the company’s IT service
management (ITSM) platform globally, and became CEO in 2013.

SysAid practices DevOps for more than just speed and reliability. Their
process is about including customers in the development cycle. Here it is
from Sarah:

How did you get into DevOps?

At SysAid, we used to use Waterfall, which resulted in long development
cycles. We’d try something, and if it didn’t work, we’d go through the pro-
cess again.

We’ve always consulted our customers on new ideas and releases – that’s
one of many reasons why sysadmins trust SysAid. They have an influence
on what we do. We used to have focus groups, meetings, and so on. But it be-
came a challenge for us to incorporate their feedback and release quickly.
DevOps changed all that. To me, it’s a culture where one team, which we

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

72

call R&D, absorbs the complete cycle of development from conception to
production. R&D interfaces directly with customers for that feedback I men-
tioned – there’s no middleman.

What does DevOps look like at SysAid?

We release every two weeks, and before anything goes live, we’ve solic-
ited feedback from customers. Basically, on day five or six of the two-week
cycle, we push the change to customers willing to test the new feature. We
ask, was it helpful or not? Then we reach out to the customers who found it
unhelpful.

This live testing is vital because the complexity of our product reflects
the environment of the customers. For example, some companies that use
our IT asset management tools might have tens of thousands of devices in
their system. We test rigorously, but we might not anticipate all the ways
a release could affect each internal network. Different security standards,
regulations, network configurations, and firewalls could produce unintend-
ed effects.

So, DevOps put our QA on steroids. We make small changes on the run,
check in with some customers, and make sure it’s what they need before
going live.

Why does DevOps matter for SysAid? How has it changed the
company?

Companies need to roll out changes quickly because Facebook, Twitter,
Netflix, etc. have set high expectations for all tech companies – not just
consumer platforms. We’re supposed to introduce changes all the time yet
maintain quality. People want the right experience fast, so to be a leader in
our space, we meet those expectations.

a publication of cprime

73

Talk to us about security. How does SysAid incorporate it into
DevOps?

Customers need to know if they are protected or not. Part of our job is to
update SysAid rapidly when a new security threat is discovered. The Wan-
naCry ransomware attack is a good example. Microsoft released patches
for WannaCry in March, but when the hackers repropagated WannaCry
in May, many companies hadn’t patched their Windows systems. It was a
disaster.

One of SysAid’s key capabilities is patch management, which makes sure
every device in a client’s system is up-to-date and defended. When we get
new patch information, we update as quickly as possible and test – often
in a matter of hours – so that both SysAid and its clients are safe. Without
DevOps, we couldn’t react that quickly and assure our clients they are
protected.

How are DevOps and IT service management converging?

We have started to talk about that concept at SysAid. But you have to
understand that ITSM has a whole body of processes that are distinct from
DevOps.

For example, ITSM might call for getting approval from stakeholders x, y,
and z before you make a drastic change to systems they use. That approval
could take minutes, hour, weeks, or months to get depending on the organi-
zation.

Once you have approval, DevOps is great – you’ll get whatever it is done
faster and with higher quality. But doing DevOps doesn’t absolve IT of their
responsibility to consult with the business. If you’re going to take a server
down, you still need agreement about when, why, and the impact on the

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

74

organization. The speed of action change, but DevOps might not change how
you make ITSM decisions.

What is the biggest avoidable mistake you have seen in
DevOps?

The biggest mistake is that companies underestimate the difficulty of
cultural change. They want instant results and won’t give it time. The
mentality of DevOps redefines the needs of the organization, so if you don’t
change the mentality,

DevOps won’t have a purpose. It just feels like processes.

And there is no “done” with DevOps. You’re always changing and improv-
ing. It’s not something you can finish. At SysAid, we started with longer
cycles and shortened them over time. It took practice.

What questions do you ask your DevOps team regularly?

Every Thursday, we talk about incidents. My concern is the customers and
anything that affected their service. What happened? Why? How will we
prevent it next time? By each meeting, we should have made changes that
will prevent last week’s incident.

How do you gauge success in DevOps?

You’re succeeding at DevOps if you can make significant changes without
breaking anything. It’s all about minimal time of interference. We want to
always be up and running, and DevOps makes that possible. Changing a
system is like modifying the genes of a living organism. So much can wrong.

a publication of cprime

75

We have an open floorplan, and right in the center of the DevOps space,
there’s a picture of a beating heart. It’s there to remind the DevOps team
that they are the heart of the operation. They make sure we have a steady
pulse at all times.

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

76

CONCLUSION
We never finished the story about the two men fighting in a Las Vegas
hotel. As promised, it has a happy ending – and a way forward for Agile.

The original MMA fights of the 1980s tried to answer an unanswerable
question: Which martial art was the ‘best’ for unarmed combat? The perfor-
mance of individuals became a referendum on fighting systems developed
over centuries. They may as well have put priests, rabbis, and imams in the
ring to figure out which religion was more ‘effective.’

By the late 1990s, MMA fighters had evolved into artless artists. They
stopped identifying with Muay Thai and Taekwondo and started adopting
whatever techniques and strategies worked. Pragmatism, not servitude to
a made-up identity, guided the MMA fighters. Why be a ‘Karate guy’ only
when learning some jujutsu could save you from blacking out beneath an
opponent?

The fighters realized there was no ‘right’ way to fight if they wanted to
stay conscious and keep their teeth. The pursuit of perfection in hand-to-
hand fighting guided mixed martial artists. Towards that impossible goal,
they shed the recipe books, identities, and arbitrary rules of the disciplines
in which they grew up. Styles evolved from movements into open-source
frameworks.

We hope that Agile follows the same path. Right now, we’re in that phase of
questioning who has the best style. It evades a better question: What is the
point of all this?

a publication of cprime

77

Businesses go Agile to innovate faster, make more money, and stay in
business. Likewise, the companies behind MMA promote fights to make big
bucks. But we – the practitioners, coaches, and strategists in Agile – won’t
stay hungry pursuing productivity and profits as ends in themselves.

Perhaps instead, we can pursue perfection in learning, creation, and
quality. That’s what great Agile practitioners seem to do. Our craft
isn’t limited to software development. Wherever a group of people work
towards a collective purpose, the Agile mentality can help.

We began this project not knowing the conclusion (hence, not a white pa-
per). We said we wrote this book for three reasons:
To rediscover what Agile is and why it exists.

To show what it’s like to practice Agile through conversations with practi-
tioners.

To rediscover common ground in a fractured Agile community.
If you read this book, you now have multiple perspectives on the what,
why, and nature of Agile. The common ground is trickier, but based on the
interviews, we can identify at least five themes that bond all Agile practic-
es together:

Process emerges from purpose. If you don’t know why you’re building
something, Agile and DevOps processes won’t improve your decision-mak-
ing. Without a why, we’re just big-brained monkeys smacking plastic keys
so we can get scraps of paper that we trade for food and shelter. If you can
find the why, Agile will help you figure out the how.

Being human isn’t a process. Collaboration had existed for millions of
years before Agile came along (arguably, that’s why we haven’t gone ex-
tinct yet). Agile is not a magic formula that makes people work together, but
rather a mentality. The mentality is that we learn and evolve best togeth-

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

78

er. Agile can take us closer to our nature and further from the Dilbertesque
corporate cultures that want us to compete, politick, and generally be
jackasses to each other.

It looks ugly. Agile does not resemble synchronized swimming. The method
is chaotic on the inside no matter how routinized it looks from the outside.
But the resulting product is graceful. If Agile feels ambiguous, unpredict-
able, and rambunctious, good. Agile team members aren’t sheep. They
question, argue, and experiment their way to achievements.

Agile is supposed to be hard. Some people want to be rock stars, A-list
actors, or the best at fighting in octagonal cages. But most people with
those aspirations don’t want to put in the work. Agile, like singing, acting,
and fighting, takes serious practice. The Manifesto understood the extent
to which Agile would upend conventional business culture and therefore
meet resistance. Starting a revolution at work is fun. Keeping it alive is
hard work.

“Done” is an illusion because quality has an expiration date. What we
label “quality” today could be stale in one year. Every “done” in Agile is the
starting point for something better. Hell, Agile became a starting point for
DevOps, which, in turn, helped Agile scale and sustain itself. Agile resists
the tempting notion that you can define and solve a problem completely.
Agile “done” is starting over, getting lost again, and finding your bearings
somewhere no one else has been.

Baldeep Sadhal, Assistant VP of Customer Experience at AT&T Entertain-
ment Group, made a comment that puts this whole book in context: “Compa-
nies don’t die because they can’t change. They die because they can’t
change fast enough.”

Recipe-book Agile, as Jeff McKenna calls it, deceived companies into thinking
they could change by following the recipes. However, recipes don’t neces-

a publication of cprime

79

sarily change a culture. The myth that there’s one right way to “do” Agile
and DevOps has become the quicksand where transformations sink. The
recipe book absolves companies from changing toxic cultures by measur-
ing Agile in practices, not attitudes and outcomes. To David Hussman’s point
(in the next chapter), you can’t do Agile like dishes. You can only practice
agility. That’s rough for business leaders who are trained to get ‘the’ an-
swer and operationalize the hell out of it. But that’s the reality.

The Agile lingo will show up in college courses, job titles, certifications, and
self-congratulatory corporate mission statements that sound no different
from any other. We can live with the lingo as long as we stay on guard
against the dogma. Again, the artless art is to be pragmatic, borrow what
fits, and discard what doesn’t. If there were one right way to practice agili-
ty that couldn’t be improved upon, then by definition it wouldn’t be Agile.
So where might you, the reader, go from here?

As a start, shamelessly steal the questions that our interviewees regularly
ask their teams. Those alone might bring out agility where your teams are
suffering from rigidity. Second, continue learning. We recommend reading
The Phoenix Project and The DevOps Handbook for detailed information about
Agile techniques, a topic we intentionally skipped. Last, if your development
and operations teams are living out scenes from Contested Development, our
fake reality TV show from chapter IV, do what the couple should have done:
Get help. Try DevOps marriage counseling while it’s still an option.

a publication of cprime

81

GREAT, YOU’RE
DEPLOYING THE

WRONG THING ‘FASTER
David Hussman - DevJam

Many coaches reduce Agile to a rigid set of processes without regard for
their purpose. That’s why we chose David Hussman, founder of DevJam, for
the last word.

No one asks “why?” quite like David. He brings an integrity to Agile that
often collides with the alleged ‘rules.’ In this interview, we question the
assumptions and conventions behind modern Agile:

What is Agile? Where does it come from?

Scrum became a popular approach shortly after Alistair Cockburn came up
with the term “Agile.” People were calling these new methods ‘lightweight,’
and Alistair didn’t like that label so he coined the term Agile. While it was
a better name, giving these methodologies a name led to homogenized pro-
cesses, with Scrum certifications becoming the most popular.

Big A “Agile” can get in the way. It’s never been about Agile; it’s always
been about agility. For me, agility is about finding simple processes that
help people collaboratively bond around rapid learning based in evidence.

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

82

If people are just doing a process, that’s not the point. That’s where “I’m
Agile” versus “we’re practicing agility” becomes an issue. It’s the adjective
over the noun problem. For example, if you say, “I’m democratic,” that’s
a hell of a statement in the 21st century. On the other hand, “I’m trying to
practice democracy” means I have to listen to people I despise because
that’s at the core of democracy. The same is true of any philosophy, religion,
or movement.

I hear many people say first, we’ll “do” Agile. Then, we’ll “do” DevOps. This
seems weird to me because the core of DevOps started when collaborative
leaders, some of whom were Extreme Programming (XP) coaches, started
reaching out to and collaborating with people in Ops.

More interesting is the use of the verb “to do.” In English, you only use that
verb in that way when you’re talking about something discrete. I’m going
to “do” the laundry. I’m going to “do” the dishes. You do it, then it’s done. You
can proceduralize the shit out of it. I can’t imagine Einstein saying, “I’m going
to do some physics.” It sounds so stupid! The nature of the work is experi-
mental, not procedural. The same is true for many teams building products
with Agile practices. Where there is uncertainty, the goal is not to get more
done but to eliminate what you do not know.

I often draw continuums while coaching. One of my favorite continuums
has things known, things certain, and things procedural on the left. Things
that are unknown, the uncertain, and the experimental are on the right.
As a working coach, knowing where people fit on the continuum helps
you help them and avoid making them “do Agile.” Following the pro-
cess – any process – does not equal success. Success equals success.

a publication of cprime

83

Where has identity-based Agile led us?

Ward Cunningham, one of the Agile Manifesto authors and inventor of the
first wiki, is a mentor of mine. I once asked him, “Aren’t you frustrated with
what people have done with your ideas?” I was referencing the cargo cult
mentality that spawned from the myth of Scrum certifications as opposed
to the solid grounding I had learned from being a practitioner of Extreme
Programming, which Ward helped Kent Beck develop.

“David,” he said, “if it weren’t for Scrum, we wouldn’t be sitting here.” This
comment horrified me until I understood his point. Ward was calling out
that people need something to latch on to when you ask them to change. If
they can say, “Look, I’m doing Agile,” they feel grounded. Sadly, it’s a bit like
hearing someone say “Look, I’m doing Democracy.” Or Christianity. Or, if you
are into music, it would be the natural tendency of people to latch on to a
named set of music like, “We’re a grunge rock band.”

To cite another great thinker, Warren Buffett once spoke about the causes
of the 2008 financial crisis. He explained that first come innovators, then
imitators, and then idiots.

I’m not trying to be crabby or mean. I want to help people who want to
change, even if they are afraid to change. Most people need a rule set
to latch onto to get started. The rub comes when the rules become more
important than the impact they produce. I’ve often used a soccer analogy
to help explain this challenge. Soccer is the world’s most popular sport
because all you need is a ball and two nets, and the rules fit on one piece
of paper. But being a great soccer team does not come from knowing the
rules. Great soccer teams know the rules, can play the game, and are able
to adapt their style to the team they are playing. Adding more rules often
gives people the illusion that things will be better, when what often hap-
pens is an over-focus on rules instead of impact.

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

84

Agile can be a Catch-22 because the more people are asked to change, the
more they want rules that will make them feel comfortable.

What do most Agile coaches do wrong?
The number one mistake is that they scorecard how many practices people
do and don’t look at the impact of the change. Many coaches look at how
long it takes to deploy a new feature. While that is good evidence to learn
about deployment issues, it fails to measure the impact of the feature. I
often tell people, once you start delivering consistently, you need to start
asking if you are delivering the right thing.

Good coaching involves finding just enough process for a team or a collection
of teams working on one product. The best way to figure that out is to look
at the team’s impact on the market. How many people are using it? How
many people pay for it? If it’s freemium, how many convert?

When young coaches focus on how fast the team can build, they’re not
asking, “Are we building the right thing?” With the first question you
can say, look, we have zero manual processes! Great, you’re deploying
the wrong thing faster.

What’s your approach to teaching Agile?

When I was a college instructor, I was taught the Dreyfus model of skill
acquisition. First, teach them how to do it. Then teach them how to stop wor-
rying about how they’re doing it, and start worrying about why they’re
doing it. Third, watch them improvise and find better ways to do it.

Too many coaches stop at the first level. They do the practices, have a CI/
CD pipeline, and it’s exciting, but horrifying in other ways because it’s
so myopically focused on deployment. At some DevOps talks, I think to
myself, I’m glad you just discovered the automation script I wrote in 2002,

a publication of cprime

85

but what else do you have? Or, I am happy you just discovered collabora-
tion, but please be mindful that you did not invent it.

What are the consequences of obsessing over deployment?
The problem I often see in the “DevOps save the day” space is that they’re
learning how to get better at the process of deployment, but they’re not
getting better at producing the right product at the right time. Sometimes,
there is essential learning that happens outside production or outside the
code. In many cases, learning outside and upstream from the development
cycle helps teams build less of the wrong thing.

That is not to say that learning in production is not essential. I am floored by
the ways that Netflix is learning in production. They have tools that allow
them to set up a control group and experiment group, deploy to the experi-
ment group, and compare the results.

When an Agile team has a new idea, and the members are not sure it’s
right, making intentional choices for learning inside or outside the code
is an evolution they need to embrace. If you want to try this, simply take
an idea and ask yourself, “What’s the simplest experiment we can run to
validate this idea?” If you can create an appropriate prototype and gather
a significant sample set, you can validate an idea without incurring the cost
of going into deployment. That’s what I mean by learning outside the code.

How do you formulate experiments outside the code?

Start by learning a bit about DOE, or “design of experiment.” Imagine you
want to come up with a new chocolate chip cookie recipe. If you add more
sugar and change the baking time and temp to 350 degrees for 60 minutes
versus 55 minutes, do people like the cookies more or less? DOE asks the
person running the experiment to examine which variables they control
and which they do not. I meet many people who are conflating experiences

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

86

for experiments. Experiments take more discipline, and DOE is a tool to help
design experiments that are meaningful.

In the software product and services realm, many things can affect
the impact, and designs must take into consideration knowns and un-
knowns. For example, someone was telling me about customer inter-
views they were doing that were disproving an idea. When I asked
how they determined a sample size, they looked confused. It turned
out that they had interviewed ten people when the target audience
was in the millions. What they were calling an experiment I would
call bad science.

How has your background in professional music influenced
your approach to Agile/DevOps?

Most of the influence comes from being a player/producer and not just
being a player. Of the many similarities between programming and music,
the form of documentation is a strong example. Imagine I show you a piece
of sheet music. Can you tell me if it will be a pleasant listening experience?
Very few people can look at sheet music and say yeah, it’ll be beautiful. And
those who can might quickly ask, “Who’s performing it and where?”

Writing down music doesn’t specify that song or guarantee it will be great.
The Beatles wrote down very little. In music, when there’s a high degree of
collaboration within a small group, you don’t need as much documentation.
That’s the difference between a four-piece rock band and a 300-person or-
chestra. You don’t get a 300-person orchestra to magically gather together
and spontaneously jam.

In software, the written music equivalent is the code. Few people, if any, can
scan code and tell if it’s good or bad. And those who might be able to do that,
like Ward, are usually wise enough to say that they can’t tell if it will be a

a publication of cprime

87

great experience. You don’t know what you don’t know until you watch
people interact with a working piece of software.

We’re writing this whole book about the Agile, DevOps, and
their future. Ultimately, why does this stuff matter?

Sometimes I ask people, “How do you measure how wrong you are?” Too
many still stare at me with this glazed look in their eyes. If no one has asked
you that, you might be the proverbial frog in a pot. If you assume your
ideas and product features are right, you are stuck in the past.

The practices and values in the Agile and DevOps movements are the best
tools I found for learning how wrong I am faster. Learning to learn is essen-
tial in a world that is ever changing and changing faster every day.

Smaller companies are often agile without trying. Where they are not,
or when there are larger challenges, as there are at bigger companies,
agility matters for many different reasons. For example, all big box retailer
should be terrified that they are not doing as well or better than Amazon.
Many retailers are so far behind Amazon that they would be better off
killing many of their ideas and instead spending the next six months trying
to be one tenth as good as Amazon.

While it sounds challenging to survive a tour of duty at Amazon, the people
I know who have worked there talk about never starting a project without
an idea of the impact it will have. The ability to more quickly measure
the value of an idea is essential to being competitive. Agile and DevOps
cultures and practices provide tools for learning fast, as long as the prac-
titioners avoid the pitfall of thinking, “Getting things done faster means we
are more successful.”

Every organization that’s getting worse at keeping up with the rate of
change needs to find ways to adapt and learn faster. For me, agility is

CONTESTED DEVELOPMENT: FINDING PRAGMATISM IN AGILE & DEVOPS

88

fundamental to adapting and learning. Worrying about “Doing Agile”
tends to be more about methodology than results, and it is the pitfall
that many methodologists have encountered for decades. Next time an
Agile purist tells you, “You have to …” ask them “Or what?” If they have
no answer, meaning they can’t tell you “why,” feel free to ignore them
if you can.

